报告人简介:
王越,北京大学博士,博士导师韩青教授,北京大学博雅博士后,博士后导师章志飞,研究方向:几何与物理中的偏微分方程。现为首都师范大学数学科学学院讲师。
报告摘要:
In the case of favorable pressure gradient, Oleinik proved the global existence of solution for the 2-D steady Prandtl Equation for a class of positive data. In the case of adverse pressure gradient, an important physical phenomena is the boundary layer separation. In this talk, I will first review some related results and then report a recent work with Weiming Shen and Zhifei Zhang in which we prove the boundary layer separation for a large class of Oleinik’s data and confirm Goldstein’s hypothesis concerning the local behavior of the solution near the separation.
报告主持:秦玉明