主讲人简介:
杨诗武,2008年本科毕业于北京大学数学系,2013年博士毕业于美国普林斯顿大学数学系,师从Igor Rodnianski。之后赴剑桥大学做博士后,合作导师是Mihalis Dafermos。2016年加入北京大学国际数学研究中心任助理教授。主要研究方向为双曲偏微分方程、广义相对论。论文发表于Advance inMath.、CMP、ARMA、Selecta Math.等国际权威数学杂志。
内容摘要:
On the three dimensional Euclidean space, for data with finite energy, it is well-known that the Maxwell-Klein-Gordon equations admit global solutions. However, the asymptotic behaviors of the solutions for the data with non-vanishing charge and arbitrary large size are unknown. It is conjectured that the solutions disperse as linearwaves and enjoy the so-called peeling properties for pointwise estimates. We provide a gauge independent proof of the conjecture. This is jointed work with P. Yu.
报告主持:秦玉明 教授