Existence of Mean Curvature Type Flow with A Potential

主题:  Existence of Mean Curvature Type Flow with A Potential主讲人:  郑高峰地点:  松江校区2号学院楼331理学院报告厅时间:  2018-05-25 09:30:00组织单位:   理学院

报告人简介:

郑高峰,华中师范大学教授,数学与统计学院副院长,主要研究椭圆、抛物型偏微分方程、几何发展方程,主持过多项国家自然科学基金项目。

报告摘要:

In this talk, we study the parabolic Allen-Cahn equation, which has slow diffusion and fast reaction, with a potential K. In particular, the convergence of solutions to a generalized Brakke’s mean curvature flow is established in the limit of a small parameter ε → 0.More precisely, we show that a sequence of Radon measures, associated to energy density of solutions to the parabolic Allen-Cahn equation, converges to aweight measure of an integral varifold. Moreover, the limiting varifold evolvesby a vector which is the difference between the mean curvature vector and thenormal part of ∇K/2K.

报告主持:陶有山 教授

  

编辑:孙庆华     撰写:陶有山